Embryonic cord transplants in peripheral nerve restore skeletal muscle function.

نویسندگان

  • C K Thomas
  • D E Erb
  • R M Grumbles
  • R P Bunge
چکیده

The rapid atrophy of skeletal muscle after denervation severely compromises efforts to restore muscle function. We have transplanted embryonic day 14-15 (E14-E15) ventral spinal cord cells into adult Fischer rat tibial nerve stump to provide neurons for reinnervation. Our aim was to evaluate medial gastrocnemius reinnervation physiologically because this transplant strategy will only be effective if the reinnervated muscle contracts, generates sufficient force to induce joint movement, and is fatigue resistant enough to shorten repeatedly. Twelve weeks posttransplantation, brief duration electrical stimuli applied to the transplants induced medial gastrocnemius contractions that were strong enough to produce ankle movement in 4 of 12 rats (33%). The force of these four "low-threshold" reinnervated muscles and control muscles declined only gradually during five hours of intermittent, supramaximal stimulation and without depression of EMG potential area, which is strong evidence of functional neuromuscular junctions and fatigue resistant muscles. Sectioning of the medial gastrocnemius nerves confirmed that these contractions were innervation dependent. Weakness in low-threshold reinnervated muscles (8% control force) related to incomplete reinnervation, reductions in muscle fiber size, specific tension, and/or the presence of nonfunctional neuromuscular junctions. Muscle reinnervation achieved using this novel transplantation strategy may salvage completely denervated muscle and may provide the potential to evoke limb movement when injury or disease precludes or delays peripheral axon regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Electrical stimulation of embryonic neurons for 1 hour improves axon regeneration and the number of reinnervated muscles that function.

Motoneuron death after spinal cord injury or disease results in muscle denervation, atrophy, and paralysis. We have previously transplanted embryonic ventral spinal cord cells into the peripheral nerve to reinnervate denervated muscles and to reduce muscle atrophy, but reinnervation was incomplete. Here, our aim was to determine whether brief electrical stimulation of embryonic neurons in the p...

متن کامل

A First Approach towards a Biohybrid Neural Interface to Restore Skeletal Muscle Function after Peripheral Nerve Lesions

Peripheral nerve lesions lead to nerve degeneration and flaccid paralysis. The first objective in functional rehabilitation of these diseases must be the preservation of the neuro-muscular junction by biological means. Secondly, stimulation by means of neural prostheses may restore some function of the paralyzed limb. First success in implanting embryonic cells to preserve skeletal muscle has b...

متن کامل

Motoneuron replacement for reinnervation of skeletal muscle in adult rats.

Reinnervation is needed to rescue muscle when motoneurons die in disease or injury. Embryonic ventral spinal cord cells transplanted into peripheral nerve reinnervate muscle and reduce atrophy, but low motoneuron survival may limit motor unit formation. We tested whether transplantation of a purified population of embryonic motoneurons into peripheral nerve (mean ± SE, 146,458 ± 4,011 motoneuro...

متن کامل

Direct optical activation of skeletal muscle fibres efficiently controls muscle contraction and attenuates denervation atrophy

Neural prostheses can restore meaningful function to paralysed muscles by electrically stimulating innervating motor axons, but fail when muscles are completely denervated, as seen in amyotrophic lateral sclerosis, or after a peripheral nerve or spinal cord injury. Here we show that channelrhodopsin-2 is expressed within the sarcolemma and T-tubules of skeletal muscle fibres in transgenic mice....

متن کامل

Damage-induced neuronal endopeptidase is critical for presynaptic formation of neuromuscular junctions.

Damage-induced neuronal endopeptidase (DINE) is a metalloprotease belonging to the neprilysin family. Expression of DINE mRNA is observed predominantly in subsets of neurons in the CNS and peripheral nervous system during embryonic development, as well as after axonal injury. However, the physiological function of DINE and its substrate remain unknown. We generated DINE-deficient mice to examin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 84 1  شماره 

صفحات  -

تاریخ انتشار 2000